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Performance and intestinal health of piglets in the  
nursery phase subjected to diets with condensed  
black wattle (Acacia mearnsii) tannin
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Alcides Oliver Sencio Paes3, Rafael Humberto de Carvalho1,2, and Caio Abércio da Silva1,*

Objective: The objective of this study was to evaluate the use of condensed tannin from 
black acacia (Acacia mearnsii) as a substitute additive for zinc oxide and growth-promoting 
antibiotics on the performance, digestibility, and intestinal health of piglets in the nursery 
phase.
Methods: A total of 200 PIC piglets that were 22 days old and weighed 6.0±0.9 kg were 
subjected to four treatments in the nursery phase (22 to 64 days of age): CONTR (control 
diet); ENR+ZnO (control diet + 10 mg/kg of enramycin + 2,500 mg/kg of zinc oxide during 
the first 21 days); BUT (control diet + 900 mg/kg of sodium butyrate) and TAN (control 
diet + 2,000 mg/kg of condensed tannin). The experimental design was a randomized block 
with 4 treatments and 10 replicates, with a pen of five animals each as the experimental unit. 
The zootechnical performance, diarrhea index score, dietary digestibility and metagenomics 
of the deep rectum microbiota were evaluated.
Results: The TAN had greater weight gain in the nursery phase and final weight (p<0.05) 
than the CONTR (394 vs 360 g/d, and 22.6 vs 21.1 kg, respectively), with these values 
being intermediate for the ENR+ZnO and BUT (365 and 382 g/d, and 21.3 and 22.1 kg, 
respectively). There was no difference between treatments for semi-liquid diarrhea (score 
2), but CONTR had more cases of severe diarrhea (score 3; p<0.05) than ENR+ZnO, 
BUT and TAN, with 42, 18, 29, and 21 cases, respectively. The treatments had no impact 
on rare taxa or the relative abundances of taxonomic groups (uniformity), but the use 
of TAN promoted an increase in the abundances of Brevibacillus spp. and Enterococcus 
spp. compared to the other treatments (p<0.05).
Conclusion: The use of condensed tannin from black wattle as a performance-enhancing 
additive was effective, with effects on performance and intestinal health, demonstrating its 
potential as a substitute for zinc oxide and enramycin in the diets of piglets in nursery phase.
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INTRODUCTION

Modern swine farming, even with innovative technologies, results in unavoidable stressful 
conditions at the time of weaning, limiting the digestion and absorption of nutrients, water, 
and electrolytes, in addition to impairing the protective barrier of the gastrointestinal 
tract [1]. Consequently, intestinal permeability increases, which favours the establishment 
of pathogens such as Escherichia coli (E. coli), increasing the frequency of cases of diarrhea 
[2].
 Antibiotics have been used for decades in prophylactic conditions or as growth pro-
moters, effectively addressing the limitations and challenges inherent in the post-weaning 
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period by promoting improved weight gain and feed con-
version ratio, and reducing diarrhea and mortality in nursery 
piglets [2,3]. However, their use presents significant risks, 
including the selection and multiplication of resistant patho-
gens [4], masking of subclinical conditions that lead to 
decreased performance, and potential risks to human health, 
resulting in their global banishment [3]. Similarly, zinc oxide, 
commonly used at doses between 2,000 and 3,000 mg/kg 
to reduce the symptoms and severity of post-weaning diarrhea, 
has proven to be highly effective. Nevertheless, its high-dose 
use poses an environmental risk [5], as a substantial portion 
of the zinc (60% to 80%) is excreted in the feces [6], leading 
to bans on its use at high concentrations in many countries 
[3].
 The use of alternative additives as substitutes for antimi-
crobials is gaining ground within the swine industry, aiming 
for similar or superior results compared to antimicrobials 
and zinc oxide without posing risks to animals, the environ-
ment, or humans. In this context, tannins, which are naturally 
occurring polyphenolic compounds found in various plant 
species, have emerged as a promising alternative additive 
due to their astringent, antimicrobial, and antioxidant prop-
erties. They can be divided into two categories: hydrolysable 
and condensed tannins, each offering unique benefits and 
applications [7]. Condensed tannins, or proanthocyanidins, 
are polymers of flavonoids that are not susceptible to hydrolysis 
and are consequently poorly absorbed in the gastrointestinal 
tract [8]. This class of tannins is found in many vegetables, 
particularly in black wattle (Acacia mearnsii), a tree native to 
Australia that is among the richest sources of this compound 
[9].
 Regarding its potential as a feed additive for production 
animals, tannins act as a performance enhancer by opti-
mizing protein metabolism, increasing the absorption of 
amino acids, and due to factors associated with improved 
intestinal health [10]. Their antioxidant, anti-inflammatory 
and antimicrobial properties may help modulate the intestinal 
microbiota, reducing the incidence of diarrhea, especially 
in the post-weaning phase, when the animal is more vulner-
able to this condition [10]. The antimicrobial effects of tannins 
result from distinct actions that include structural or func-
tional changes in the bacterial membrane, damage to the 
physicochemical properties mainly linked to the hydro-
phobicity of the bacterial cell surface [11] and competition 
that they exert with signalling molecules of the bacterial 
membrane receptors involved with quorum sensing [12].
 In swine, tannin use is not as popular as other alternative 
additives; however, Girard et al [13], when using 1% chestnut 
tannin extract, were successful in controlling diarrhea in 
piglets challenged with E. coli ETEC F4, and Ma et al [14], 
using tannin from quebracho (Schinopsis lorentzii) for nursery 
piglets, also found an improvement in the incidence of diar-

rhea, with positive repercussions on intestinal morphometry. 
In turn, Biagi et al [15], evaluating increasing doses of Brazil 
nut (Castanea sativa mill) tannin for weaner piglets, found 
positive effects on health and performance compared to a 
group that did not receive this additive.
 Given the widespread use of butyrate and other acids as 
feed additives to replace antibiotics as growth promoters and 
zinc oxide [16], particularly following European restrictions 
on these substances—and considering the systematic use of 
enramycin in conjunction with zinc oxide in major pig-pro-
ducing countries such as China and the USA for controlling 
diarrhea in piglets [17], this study explores alternative solu-
tions. Recognizing the diverse sources and limited information 
available on the potential of condensed tannins for produc-
tion and animal health, we hypothesized that the use of 
condensed tannin from black wattle (A. mearnsii) could effec-
tively replace these traditional additives. Thus, our study 
aimed to evaluate the efficacy of black wattle extract in en-
hancing performance, controlling diarrhea, improving 
digestibility, and modulating the intestinal microbiota as 
compared to the established treatments of enramycin with 
zinc oxide and sodium butyrate.

MATERIALS AND METHODS

Ethics committee 
All procedures performed in this study were previously re-
viewed and approved by the Ethics Committee for Research 
and Experimental Animals of Akei Animal Research; the 
approval reference number is 014/20.

Animals 
A total of 200 piglets, half castrated males and half females, 
of the PIC genetic line (Camborough X AG 337) that had an 
average age of 22 days, and a live weight of 6.0±0.9 kg were 
used.

Experimental design and treatments 
The experimental design was randomized blocks (which were 
formed based on the initial weights of the animals and sex), 
with four treatments and 10 replicates per treatment. A pen 
with five animals of the same sex formed the experimental 
unit. The animals had free access to feeds and water through-
out the experimental period (22 to 64 days of age), and the 
nutritional program [18] was divided into four phases: pre-
initial I (22 to 29 days), pre-initial II (29 to 43 days), initial I 
(43 to 50 days) and initial II (50 to 64 days; Table 1). The 
following treatments were applied within each nutritional 
phase: CONTR, control diet (free of growth promoting addi-
tives); ENR+ZnO, control diet with the addition of antibiotics 
(10 mg/kg enramycin) + 2,500 mg/kg zinc oxide in pre-initial 
phases I and II; BUT, control diet with the addition of 900 
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mg/kg sodium butyrate; TAN, control diet with the addition 
of condensed tannins (2,000 mg/kg).
 In the TAN treatment, extract of the black wattle (A. mearn-
sii) plant was added to the rations with the product Tanfeed, 
which contains approximately 47.8% tannin. This served as 
a source of condensed tannins at a concentration of 2,000 
mg/kg. The tannin dose was based on Caprarulo et al [10] 
review.

Experimental management 
Piglets were weighed at 0, 7, 21, 28, and 42 d of experiment 
individually to calculate the average daily gain (ADG). Feed 
intake was recorded during the experimental period for each 
pen every two weeks to calculate the average daily feed intake 
(ADFI). The ADG:ADFI (G:F) for each pen was calculated 
subsequently.
 The diarrhea score was determined daily and classified as 

Table 1. Composition and nutritional values of the rations used in the experimental procedures for the pre-initial I and II and initial I and II phases 
(as-is basis)

Items
Phases

Pre-initial I Pre-initial II Initial I Initial II

Ingredients (%)
Corn grain 44.503 42.045 51.775 60.630
Soybean meal 13.161 22.048 26.352 30.838
Pregelatinized corn flour 10.000 10.000 5.000 0.000
Whey powder 14.000 12.000 7.000 0.000
Milk powder 10.000 5.000 2.500 0.000
Blood plasma 5.000 4.000 2.500 0.000
Soybean oil 0.208 1.075 1.519 4.199
Dicalcium phosphate 1.110 1.073 1.452 1.833
Limestone 0.280 0.506 0.547 0.765
L-lysine 0.543 0.316 0.365 0.397
L-threonine 0.256 0.121 0.150 0.157
DL-methonine 0.360 0.214 0.185 0.156
L-valine 0.039 0.000 0.000 0.033
L-tryptophan 0.051 0.012 0.012 0.024
Adsorvent 0.150 0.150 0.150 0.150
Salt 0.032 0.132 0.233 0.568
Choline chloride 0.047 0.047 0.000 0.000
Antioxidant 0.010 0.010 0.010 0.010
Vitamin premix1) 0.150 0.150 0.150 0.150
Mineral premix2) 0.100 0.100 0.100 0.100
Total 100.00 100.00 100.00 100.00

Nutrients
Metabolizable energy (kcal/kg) 3,500 3,400 3,350 3,350
Crude protein (%) 18.500 20.045 20.000 19.450
Crude fat (%) 4.837 4.383 4.461 6.640
Crude fibre (%) 1.801 2.355 2.682 3.053
Calcium (%) 0.640 0.697 0.750 0.872
Available phosphorus (%) 0.440 0.401 0.420 0.431
SID lysine (%) 1.440 1.334 1.300 1.206
SID methionine + cysteine (%) 0.927 0.814 0.770 0.687
SID threonine (%) 0.940 0.855 0.840 0.784
SID tryptophan (%) 0.250 0.240 0.230 0.229
SID valine (%) 0.857 0.892 0.813 0.832
SID isoleucine (%) 0.696 0.775 0.778 0.749
Sodium (%) 0.320 0.300 0.250 0.250
Chlorine (%) 0.380 0.346 0.337 0.366

SID, standardized ileal digestibility.
1) Rovimix (DSM, Heerlen, Netherlands): levels per kg of vitamin premix product: 6,000 IU of vitamin A  as vitamin A acetate; 1,500 IU of vitamin D3; 15,000 
mg of vitamin E; 1,500 mg of vitamin K3 as menadione sodium bisulfate; 1,350 mg of vitamin B1 as thiamine mononitrate; 4,000 mg of vitamin B2 as  
riboflavin; 2,000 mg of vitamin B6 as pyridoxine hydrochloride; 20 mg of vitamin B12 as cyanocobalamin; 20,000 mg of niacin as nicotinic acid; 9,350 mg of 
pantothenic acid as calcium pantothenate; 600 mg of  folic acid; 80 mg of biotin; 300 mg of selenium as sodium selenite. 
2) Oligomix (DSM, Heerlen, Netherlands): levels per kg of mineral premix product: 100 mg of iron as ferrous sulfate; 10 mg of copper as copper sulfate; 40 g 
of manganese as manganous oxide; 1,000 mg of cobalt as cobalt sulphate; 100 mg of zinc as zinc oxide; 1,500 mg of iodine as calcium iodine. 
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follows: 0, stools of normal consistency; 1, soft stools; 2, pasty 
stools; and 3, aqueous stools [19]. The diarrhea severity index 
was calculated according to the equation:

 Diarrhea severity index 
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 On the 21st day of the experiment, feces were collected 
from the deep rectum using a swab. Forty animals were 
sampled, and one animal from each replicate was randomly 
chosen. The content (approximately 2 g) was transferred to 
an Eppendorf tube, which was refrigerated for maintenance 
and immediately frozen at –80°C. The samples were subjected 
to metagenomic analysis using the ZR Fecal DNA MiniPrep 
kit from Zymo Research (No. D6010; Zymo Research, Irvine, 
CA, USA) to extract DNA from the samples, following the 
protocol recommended by the manufacturer. The extracted 
DNA was quantified by spectrophotometry at 260 nm (Ther-
mo Fisher Scientific, Waltham, MA, USA). To evaluate the 
integrity of the extracted DNA, all samples were run by 
electrophoresis on a 1% agarose gel (Bio-Rad Laboratories, 
Hercules, CA, USA).
 A segment of approximately 460 bases of the V3-V4 hy-
pervariable region of the 16S rRNA ribosomal gene was 
amplified using universal primers and the following PCR 
conditions: 95°C for 3 min; 25 cycles of 95°C for 30 s, 55°C 
for 30 s, and 72°C for 30 s; followed by a step at 72°C for 5 
min. The metagenomic library was constructed from these 
amplicons using the Nextera DNA Library Preparation Kit 
from Illumina (No. FC-131-1096; Illumina, San Diego, CA, 
USA). The amplicons were pooled and subsequently se-
quenced on the Illumina MiSeq sequencer (No. SY-410-
1003; Illumina, USA) [20].
 The sequencer readings were analysed on the quantitative 
insights into microbial ecology (QIIME) platform [21]. The 
sequences were classified into bacterial genera through the 
recognition of operational taxonomic units (OTUs), in this 
case, the homology between the sequences and those in a 
database. The 2017 update (SILVA 128) of the SILVA ribosomal 
sequence database [22] was used to compare the sequences.
 At 42 days of age, during initial phase I, the animals were 
subjected to experimental diets containing 0.3% chromic 
oxide as an indigestible marker. This decision aligns with 
findings by Tang et al [23], who noted that intestinal barrier 
function is impaired at the beginning of weaning but begins 
to recover after two weeks. An adaptation period of at least 5 
days was necessary for accurate digestibility measurements 
in pigs fed diets with 1.8% to 3.3% crude fiber. Previous 
studies indicate that fecal chromium concentrations stabilize 
by day 5, ensuring consistent apparent total tract digestibility 
(ATTD) values [24,25]. After 5 days of consumption of each 

of these diets, feces were collected from the animals for three 
consecutive days, totaling one pool of feces per pen, with a 
volume of approximately 500 g. Afterwards, the feces were 
stored at –20°C until they were dried in a forced ventilation 
oven at 62°C for 72 h. The samples were subjected to deter-
mination of dry matter, performed by drying in a forced 
air oven (Thermo Fisher Scientific, USA) at 105°C for 6 h 
(method 934.01); ash and crude protein, analysed using 
the methods 942.15 and 990.03, respectively [26]; and gross 
energy, determined by an automatic adiabatic oxygen pump 
calorimeter (Parr 1281, Automatic Energy Analyzer; Parr 
Instrument Company, Moline, IL, USA). The chromium 
content in the diets and feces was measured using an atomic 
absorption spectrophotometer (PerkinElmer, Waltham, MA, 
USA). With these data, the ATTD [27] in initial phase I 
was calculated using the following equation: 
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 Where, %Chromiumfeces is the percentage of the chromium 
indicator in the feces; %Chromiumfeed is the percentage of 
the chromium indicator in the feed; %Nfeces is the percentage 
of the nutrient in the feces; %Nfeed is the percentage of the 
nutrient in the feed.

Statistical analyses 
In this study, the experimental design was a randomized 
complete block design, considering the sex (male and female) 
and initial weight of the piglets as blocking factors. These 
factors were used to classify piglets into five weight categories, 
aiming to ensure homogeneity within each block. The fixed 
effects in the model included the treatment itself, the block 
defined by sex and weight category, and the interaction be-
tween treatment and block. Random effects were accounted 
for by the variability between pens within each block, recog-
nizing that individual pen characteristics might influence 
outcomes. The statistical model was: 

 Yijkl = μ+τi+βj+(τβ)ij+γk(j)+ϵijkl

 In the statistical model employed, Yijkl denotes the observed 
measurement, where μ represents the overall mean. The 
fixed effects are captured by τi, which represents the effect of 
the ith treatment, and βj, which denotes the effect of the jth 
block, such as sex and weight categories. The interaction be-
tween these treatments and blocks is expressed as (τβ)ij. The 
model also includes random effects, denoted by γk(j), which 
account for the variability among pens within each block. 
Lastly, ϵijkl captures the residual error for the lth observation 
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in the kth pen of the jth block under the ith treatment. Sta-
tistical analyses were conducted using R statistical software, 
version 3.5.0. Means were compared using Tukey's test, and 
differences were considered statistically significant at a p-
value of ≤0.05. Trends were noted where p-values ranged 
between 0.05 and 0.10. Additionally, Chi-square tests were 
used to compare the frequency of diarrhea across treatments, 
applying the same criteria for significance.
 The differences in the alpha diversity observed and rela-
tive abundance between the groups were estimated by the 
Kruskal‒Wallis test, and the differences between the different 
treatments were estimated by post-hoc Dunn test. The effect 
of treatments on beta diversity was assessed between groups 
using permutational multivariate analysis of variance [28], 
with multiple comparisons corrected by the Bonferroni test.

RESULTS

The phase-by-phase zootechnical performance throughout 
the experimental period is shown in Table 2. There were no 

significant differences between treatments during the pre-
initial phase I (22 to 29 days of age). However, during the 
pre-initial phase II (29 to 43 days of age), the treatment with 
TAN showed significant improvements over the CONTR 
group in several zootechnical parameters: ADFI (p = 0.041), 
ADG (p = 0.006), G:F (p = 0.007), and body weight (p = 
0.036). Additionally, there were trends indicating better body 
weight at the end of the initial phase I (p = 0.067) and at the 
end of the experiment (p = 0.085), as well as improved ADG 
over the entire nursery phase (p = 0.067). 
 Relative to the other treatments (ENR+ZnO and BUT), 
the results were intermediate and similar to those of the other 
groups (CONTR and TAN), mainly for ADG considering 
the total test period and final weight, with some specific 
advantages for the ADFI (p = 0.041) and ADG (p = 0.006) 
compared to the CONTR in pre-initial phase II.
 Table 3 shows the cases and severity of diarrhea through-
out the study period, with significant reductions in the most 
severe score and in the total score (scores 2 plus 3) for all 
treatments that received additives compared to the CONTR 

Table 2. Means (±SEM) of average daily feed intake (ADFI), average daily gain (ADG), gain-to-feed ratio (G:F) and initial body weight (IBW) and final 
body weight (FBW), according to the experimental phases and throughout the study period

Items
Treatments1)

SEM p-value
CONTR ENR+ZnO BUT TAN

Pre-Initial I (d 22-29)
IBW (kg) 6.0 6.0 6.0 6.0 0.14 0.995
ADFI (g/d) 164 163 163 160.0 4.60 0.988
ADG (g/d) 119 133 121 114 5.05 0.630
G:F 0.727 0.806 0.728 0.711 0.018 0.292
FBW (kg) 6.8 6.9 6.8 6.7 0.14 0.618

Pre-Initial II (d 29-43)
ADFI (g/d) 389b 452a 449a 445a 9.14 0.041
ADG (g/d) 253b 304a 296ab 330a 8.35 0.006
G:F 0.640b 0.673ab 0.659b 0.746a 0.011 0.007
FBW (kg) 10.4b 11.2a 11.0ab 11.4a 0.19 0.036

Initial I (d 43-50)
ADFI (g/d) 593b 625ab 682a 670ab 12.06 0.082
ADG (g/d) 349 350 405 395 10.44 0.220
G:F 0.532 0.626 0.599 0.635 0.019 0.658
FBW (kg) 12.8b 13.7ab 13.8ab 14.2a 0.26 0.067

Initial II (d 50-64)
ADFI (g/d) 898 873 946 951 14.64 0.159
ADG (g/d) 595 548 588 599 10.48 0.328
G:F 0.665 0.627 0.622 0.630 0.007 0.256
FBW (kg) 21.1b 21.3ab 22.1ab 22.6a 0.33 0.085

Total (d 22-64)
ADFI (g/d) 555 573 606 603 9.51 0.197
ADG (g/d) 360b 365ab 382ab 394a 8.35 0.067
G:F 0.650 0.637 0.632 0.654 0.004 0.324

SEM, standard error of mean.
1) CONTR, control diet (free of growth promoting additives); ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg enramycin) + 2,500 mg/kg 
zinc oxide in pre-initial phases I and II; BUT, control diet with the addition of 900 mg/kg sodium butyrate; TAN, control diet with the addition of 2,000 mg/kg 
condensed tannins. 
a,b Means with different letters on the same line are different (p < 0.05) according to the Tukey test.
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group (p<0.001).
 The evaluation of the alpha diversity of the microbiota of 
the feces from the deep rectum, demonstrated by the Chao1 
bias-corrected index (Figure 1A) and Shannon entropy (Fig-
ure 1B), indicated that the treatments with additives did not 
affect either the number of different species in each group 
(richness), including the rare species, or the relative abundance 
of each taxonomic group present in the samples (uniformity).
 When analyzing the beta diversity (Figure 2A and 2B), 
there was no formation of sample clusters according to treat-
ment when considering the phylogenetic dissimilarity and 
abundance of the identified taxa, confirming the absence of 
significant differences between treatments.
 For the distribution of each experimental group, there 
was no prevalence of any representative of the taxonomic 
groups (classes, orders, families, and quantified genera) 
among the treatments; however, greater abundances were 

found at the family and genus levels for the CONTR and 
ENR+ZnO. As shown in Figure 3, the family Coriobacteri-
aceae (Figure 3A) and the genus Actinomyces (Figure 3B) 
were the most abundant taxa in the treatment that did not 
receive any additive promoting intestinal performance and 
health (CONTR). Similarly, the abundance of Actinomyces 
was higher in the CONTR group compared to the ENR+ZnO 
and BUT groups (p<0.001). As shown in Figure 4A, the 
family Peptostreptococcaceae was more abundant in the animals 
that received ENR+ZnO compared to the CONTR and 
BUT groups (p = 0.046). The abundance of the genus Metha-
nobrevibacter was similar across all treatments (Figure 4B). 
In contrast, Figure 5A shows that Brevibacillus spp. were 
more abundant in the TAN group compared to the CONTR, 
ENR+ZnO, and BUT groups (p<0.001). Meanwhile, Figure 
5B indicates that Enterococcus spp. showed no difference in 
abundance between the TAN, BUT, and CONTR groups, 

Table 3. Incidences and severity of diarrhea, according to the treatments

Items
Treatments1)

p-value
CONTR ENR+ZnO BUT TAN

Score 2 (n) 6 1 1 5 0.077
Score 3 (n) 42b 18a 29a 21a < 0.001
Total (n) 48b 19a 30a 26a < 0.001
Diarrhea severity index2) 0.022 0.009 0.014 0.012 -

1) CONTR, control diet (free of growth promoting additives); ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg enramycin) + 2,500 mg/kg 
zinc oxide in pre-initial phases I and II; BUT, control diet with the addition of 900 mg/kg sodium butyrate; TAN, control diet with the addition of 2,000 mg/kg 
condensed tannins. 
2) The diarrhea score was determined daily and classified as follows: 2 =  pasty stools; and 3 =  aqueous stools. Diarrhea severity index =  (sum of diarrhea 
scores (2: pasty and 3: aqueous stools ))/(number of total animals evaluated that day). n =  numbers of cases. 
a,b Means with different letters on the same line are different (p < 0.05) according to the Qui-square test.

Figure 1. Chao1’s alpha diversity index (A). Shannon’s alpha diversity index (B). Non-parametric Kruskal-Wallis test and post-hoc Dunn test were 
performed (p>0.05). CONTR, control diet (free of growth promoting additives); ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg 
enramycin) + 2,500 mg/kg zinc oxide in pre-initial phases I and II; BUT, control diet with the addition of 900 mg/kg sodium butyrate; TAN, control 
diet with the addition of 2,000 mg/kg condensed tannins. Chao1's alpha diversity index measures the richness of the microbial community, esti-
mating the total number of species present in a sample. Shannon’s alpha diversity index quantifies the diversity within microbial communities, 
considering both abundance and evenness of the species present. 
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but the abundance was decreased in the ENR+ZnO group 
(p = 0.030).
 Table 4 shows the digestibility coefficients of the dry matter, 
crude protein, mineral matter and gross energy of the experi-
mental diets. No differences were observed between TAN 
and the other treatments. Only the ENR+ZnO showed an 
improvement in the index (p = 0.011) of mineral matter di-
gestibility compared to the CONTR and BUT treatments, 

although ENR+ZnO did not differ from the group that re-
ceived TAN.

DISCUSSION

The benefits of the use of condensed tannin of black wattle 
(A. mearnsii) for growth performance of pigs indicate that 
this active ingredient was effective for the parameters inves-

Figure 2. Weighted Unifrac Beta Diversity distance measures (A). Bray-Curtis Beta Diversity dissimilarity measures (B). Ellipses were automatical-
ly plotted with ggforce R package. CONTR, control diet (free of growth promoting additives); ENR+ZnO, control diet with the addition of antibiotics 
(10 mg/kg enramycin) + 2,500 mg/kg zinc oxide in pre-initial phases I and II; BUT, control diet with the addition of 900 mg/kg sodium butyrate; 
TAN, control diet with the addition of 2,000 mg/kg condensed tannins. Weighted UniFrac beta diversity distance measures: This index assesses 
the similarity between microbial communities, taking into account both the phylogenetic distances and the relative abundances of different species 
present. Bray-Curtis beta diversity dissimilarity measures: This measure quantifies the dissimilarity between two microbial communities based on 
the counts of species they contain. Unlike UniFrac, Bray-Curtis does not consider phylogenetic relationships and is purely a measure of species 
abundance and composition differences.

Figure 3. Proportion of sequences from Coriobacteriaceae in tested groups (A). Proportion of sequences from Actinomyces in tested groups (B).  
Non-parametric Kruskal-Wallis test and post-hoc Dunn test were performed (p<0.05). CONTR, control diet (free of growth promoting additives); 
ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg enramycin) + 2,500 mg/kg zinc oxide in pre-initial phases I and II; BUT, control 
diet with the addition of 900 mg/kg sodium butyrate; TAN, control diet with the addition of 2,000 mg/kg condensed tannins.
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tigated, as demonstrated by the results of this study (Table 2). 
The findings indicate that, depending on the characteristics 
of the molecule and dose used, the risk that tannins may be 
an inhibitor of feed consumption due to its rancid odour 
and bitter taste, in addition to constituting an antinutritional 
factor, is not valid [29]. Such ideas, which led to a negative 
perception about the molecule, result from its use at high 
concentrations and from tannins with different molecular 
bases [30].
 Therefore, the results of this study confirm that to achieve 
the benefits we observed, the chemical structure, origin and 

dosage of the tannin used must be taken into account. Work-
ing with 1% chestnut tannin extract for prevention in piglets 
challenged or not by E. coli F4, Girard et al [13] observed no 
reduction in the feed intake of the animals, showing that 
there was no antinutritional effect due to the tannins. These 
results were also observed in our study.
 The positive responses obtained with the condensed black 
wattle (A. mearnsii) tannins (TAN) are also due to the good 
feed intake among pigs in the group given this additive, which 
is outstanding relative to the feed intake in other treatments, 
with significant advantages compared to the CONTR group 

Figure 4. Proportion of sequences from Peptostreptococcaceae in tested groups (A). Proportion of sequences from Methanobrevibacter in tested 
groups (B). Non-parametric Kruskal-Wallis test and post-hoc Dunn test were performed (p<0.05). CONTR, control diet (free of growth promoting 
additives); ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg enramycin) + 2,500 mg/kg zinc oxide in pre-initial phases I and II; BUT, 
control diet with the addition of 900 mg/kg sodium butyrate; TAN, control diet with the addition of 2,000 mg/kg condensed tannins.

Figure 5. Proportion of sequences from Brevibacillus in tested groups (A). Proportion of sequences from Enterococcus in tested groups (B). 
Non-parametric Kruskal-Wallis test and post-hoc Dunn test were performed (p<0.05). CONTR, control diet (free of growth promoting additives); 
ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg enramycin) + 2,500 mg/kg zinc oxide in pre-initial phases I and II; BUT, control 
diet with the addition of 900 mg/kg sodium butyrate; TAN, control diet with the addition of 2,000 mg/kg condensed tannins.
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in the phase between 29 and 44 days of age (Table 2). In the 
study by Ma et al [14], the inclusion of up to 0.3% quebracho 
tannin in piglet feed did not affect feed intake or weight gain. 
These results, which differ from those obtained for TAN, 
may be related to the amount and type of tannin used, age of 
the animals, basal diet ingredients and state of hygiene and 
storage.
 Regarding feed consumption, a meta-analytic study sug-
gests that low concentrations of tannins from various sources 
can enhance this zootechnical parameter, positively impacting 
performance in weaned piglets [31]. This benefit is believed 
to stem from the ability of tannins to form complexes with 
macromolecules and proline-rich protein compounds, which 
remain stable across different pH levels in the digestive tract. 
This increases the efficiency of nutrient utilization from the 
diet and mitigates the negative impact on palatability and 
feed consumption [32,33].
 The positive results observed in the zootechnical perfor-
mance of pigs treated with TAN, as detailed in Table 2, are 
particularly noteworthy because they are comparable to 
those of ENR+ZnO and BUT, which are both recognized 
and widely used additives. These effects can be attributed to 
the beneficial impact of tannins on protein metabolism, which 
enhances amino acid absorption and improves intestinal 
health, aligning with the findings of several studies [29,34]. 
In addition, the antioxidant, anti-inflammatory and antimi-
crobial properties of tannins should be considered, as they 
may help in the modulation of intestinal microbiota, reduc-
ing the incidence of diarrhea, especially in the post-weaning 
phase, when animals are more vulnerable to this condition 
[10].
 Our results are similar to those obtained by Biagi et al [15], 
who added 1.13, 2.25, and 4.5 g of nut (Castanea sativa mill) 
tannin per kilogram of feed for weaner piglets. Compared to 
a group that did not receive this additive, an improvement in 
feed efficiency, a reduction in caecal ammonia concentra-
tions and a promotion of health status were observed; the 
authors attributed these effects to the antimicrobial prop-
erties of the tannins and the inhibitory effects they have on 

bacterial toxins. In our study, the concentration of ammo-
nia in the cecum was not recorded, but no difference was 
observed in the abundance of the Methanobrevibacter family, 
the main dominant phylotype of methanogenic bacteria in 
swine [35]. 
 Our results demonstrate that TAN is as effective as addi-
tives containing ENR+ZnO and BUT in terms of zootechnical 
performance, showing similar effects on performance parame-
ters. Although enramycin helps modulate intestinal bacteria 
against gram-positive bacteria and zinc oxide acts as an en-
zyme cofactor that aids in diarrhea prevention [36], these 
additives did not achieve higher performance indices than 
those obtained with TAN. Comparing the results of the group 
that received TAN with the group treated with BUT, a product 
widely used as an alternative to growth-promoting antibiotics, 
whose actions include improving performance and intestinal 
health and controlling diarrhea [37], a similar pattern of re-
sults was verified.
 All the treatments that received additives (ENR+ZnO, 
BUT, and TAN) had a reduced incidence and severity of di-
arrhea (Table 3). The results observed for tannins were similar 
to those observed by Girard et al [13], who studied piglets 
that received an oral suspension of ETEC F4 and noted that 
the addition of 1% chestnut tannin extract reduced the mean 
faecal score, the percentage of piglets with diarrhea and the 
duration of diarrhea. However, it is not sufficient to reduce 
the shedding of E. coli. The authors also emphasize that in-
creasing the dose of tannin extract may improve its efficiency 
in controlling diarrheal conditions, but attention should be 
given to the possible antinutritional effects on protein diges-
tion or on changes in palatability of the feed due to the use 
of higher doses.
 Condensed tannins, also known as proanthocyanidins, 
are flavonoid polymers, compounds known to have biological 
activities, including anti-inflammatory, anti-carcinogenic, 
antiviral and antibacterial activities; these effects are deter-
mined by the antioxidant properties of the molecules [38]. 
These qualities may explain the positive effects we observed 
on the control of diarrhea with the use of this molecule.

Table 4. Means of the apparent total tract digestibility (%) of dry matter (DM), crude protein (CP), mineral matter (MM) and gross energy (GE) of 
initial phase I according to the experimental treatments

Items
Treatments1)

SEM p-value
CONTR ENR+ZnO BUT TAN

DM 78.80 75.72 77.16 77.54 0.66 0.352
CP 70.34 65.65 66.34 67.69 1.00 0.422
MM 39.13b 49.89a 37.97b 42.31ab 1.49 0.011
GE 78.00 73.82 74.09 76.31 0.82 0.220

SEM, standard error of mean.
1) CONTR, control diet (free of growth promoting additives); ENR+ZnO, control diet with the addition of antibiotics (10 mg/kg enramycin) + 2,500 mg/kg 
zinc oxide in pre-initial phases I and II; BUT, control diet with the addition of 900 mg/kg sodium butyrate; TAN, control diet with the addition of 2,000 mg/kg 
condensed tannins. 
a,b Means with different letters on the same line are different (p < 0.05) according to the Tukey test.



126  www.animbiosci.org

Souza et al (2025) Anim Biosci 38:117-130

 According to Ma et al [14], who used tannins from que-
bracho (Schinopsis lorentzii) for nursery pigs, supplementation 
with 0.3% of this commercial extract reduced the incidence 
of diarrhea among piglets weaned early, promoting increases 
in the jejunal villi height and crypt depth and a reduction in 
the colonic mucosa. The improvement in the diarrhea index 
was associated with low neutrophil levels, which are directly 
related to intestinal homeostasis and diseases, representing a 
key component of the innate response during an inflamma-
tory reaction [39].
 In the control of diarrhea, it should be noted that phenolic 
compounds not only have an antimicrobial action due to the 
structural or functional damage they confer to bacterial cell 
membranes [11], but also can affect the physicochemical 
properties of species by affecting the bacterial cell surface, 
mainly due to its hydrophobicity, in addition to altering the 
electron acceptors and polar and nonpolar components of 
bacteria [40]. Another antimicrobial effect of condensed 
tannins is achieved through competition with signalling 
molecules, such as acyl homoserine lactone, which bind to 
receptors on the bacterial membrane involved in quorum. 
This condition is currently of great importance, as this process 
(quorum sensing) does not determine bacterial resistance 
[12,41].
 Regarding the metagenomic evaluation, the absence of 
differences in the alpha and beta diversities between the 
treatments shows that the additives did not results in a suffi-
cient stimulus to modulate these traits. However, when 
analysing taxa with greater abundances, Coriobacteriaceae 
and Actinomyces were respectively the most abundant family 
and genus in the CONTR treatment (Figure 3), being the 
first an opportunistic pathogen related to post-infection con-
ditions [42], and the second positively correlated with the 
concentration of putrescine [43], an amine related to intes-
tinal disorders. 
 The abundances of the family Peptostreptococcaceae and 
the genus Methanobrevibacter were higher in the ENR+ZnO 
compared with CONTR and BUT, but it was similar to TAN 
(Figure 4A and 4B, respectively). The Peptostreptococcaceae 
family is associated with weight gain in pigs [44] and is ob-
served in greater abundance in animals with better intestinal 
health [45], even in cases with lower feed intake. However, 
this action was not observed to the TAN treatment. 
 In turn, the abundance of the Methanobrevibacter family 
was similar between treatments, not exerting any favors re-
garding the modulation of ammonia production. These 
findings are different from Min et al [46], who observed a 
proportional increase in this family according to the concen-
tration of tannins in the diet. It can be attributed that the 
diversity of the tannin source and the concentration used in 
our work did not favor the greater abundance of Methano-
brevibacter. 

 Regarding the TAN treatment, it influenced specific mod-
ulations, notably increasing the abundance of the genus 
Brevibacillus spp. as shown in Figure 5A, compared to the 
other treatments. However, the abundance of Enterococcus 
spp. in the TAN group did not differ from the BUT and 
CONTR groups, as illustrated in Figure 5B. The genus Bre-
vibacillus has the ability to biotransform tannins of plant 
origin [48] in addition to having a probiotic effect [47], ob-
served especially in some species of the genus (B. laterosporus 
and B. brevis) [48], as well as a recognized inhibitory effect 
against L. monocytogenes [49]. Additionally, B. brevis is closely 
related to improved feed conversion and performance of 
nursery piglets [50].
 The genus Enterococcus was also more abundant in the 
TAN treatment. In this context, within some species, such as 
E. cecorum and E. durans, Enterococcus has been highlighted 
for the advantages it has in the control of diarrheal conditions 
in animals [51]. Additionally, the species E. faecium has a 
particular probiotic effect that is related to the production of 
organic acids [52].
 In contrast, tannins from Brazil nut (Castanea sativa mill) 
showed a positive effect, determined by the tendency to in-
crease viable lactobacilli in the jejunum; however, there was 
no influence on caecal lactobacilli [15]. At the same time, the 
caecal coliform count showed a tendency to increase, while 
clostridia and enterococci were not affected by supplementa-
tion [15].
 Tannins are a group of water-soluble polyphenols, catego-
rized as hydrolyzable and non-hydrolyzable (condensed), 
each possessing distinct antibacterial activities [53]. Their 
effects also depend on their composition, which is influenced 
by the plant of origin and the extraction method of the sub-
stance [54]. For these reasons, the modulation of lactic acid 
bacteria, especially lactobacilli, may vary between studies, 
leading to inconsistent responses across different research. 
The modulation of the intestinal microbiota is a function of 
condensed tannins, resulting from a set of properties that 
directly or indirectly determine the condition, highlighting 
the antioxidant, anti-inflammatory and antimicrobial activi-
ties they possess [10]. 
 Condensed tannin (A. mearnsii) did not affect the ATTD 
of dry matter, crude protein, mineral matter and gross ener-
gy of the diets, behaving similarly to the other treatments 
(Table 4). The notion that tannins are anti-nutritional sub-
stances due to their ability to precipitate proteins, inhibit 
digestive enzymes, and reduce nutrient utilization was not 
supported by this evaluation [55]. It confirms that the dietary 
concentration and molecular characteristics of tannins must 
be considered. Consistent with this, Girard et al [13] reported 
no performance detriment or antinutritional effects from 
using tannins as an additive in piglet diets. However, the ob-
served enhancement in mineral digestibility for the ENR+ZnO 
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diet compared to the CONTR and BUT diets aligns with find-
ings by Mille et al [56]. In their study using pharmacological 
levels of zinc for weaned piglets, Mille et al [56] did not ob-
serve improvements in the digestibility of other nutrients, 
yet they noted enhanced rates of mineral retention. This im-
provement can be attributed to the role of zinc oxide in 
enhancing digestion by stimulating pancreatic and intestinal 
enzymatic activities [57], as well as by improving the mor-
phology of the small intestine [58]. Furthermore, the addition 
of enramycin to zinc oxide appears to enhance this digestive 
benefit, contributing to the activity of digestive enzymes and 
reducing damage to the intestinal mucosa structure [59]. 
 The use of tannin as an additive has not compromised the 
digestibility of amino acids and proteins, as evidenced by 
other studies [60,61]. This supports the notion that tannin's 
ability to bind to proteins does not necessarily exert negative 
effects. Instead, the formation of tannin-protein complexes 
may protect proteins, carbohydrates, and lipids from oxida-
tive damage during digestion [62]. These results confirm the 
suitability of using condensed tannins from black wattle (A. 
mearnsii) at the dose applied as a performance-enhancing 
additive without risk of negatively influencing the digestibility 
of dietary nutrients.

CONCLUSION

The condensed tannin from the extract of black wattle (A. 
mearnsii), as an additive for piglets in the nursery phase, was 
effective in controlling diarrheal conditions, did not affect 
the digestibility of the nutrients in the diet and promoted 
specific modulations of the intestinal microbiota, with positive 
results on zootechnical performance. The results demon-
strate that condensed black wattle tannin are an effective 
substitute for zinc oxide associated with enramycin and led 
to results similar to those achieved in diets that used sodium 
butyrate.
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